Электроотрицательность. Степень окисления и валентность.

1.3.2. Электроотрицательность. Степень окисления и валентность химических элементов.

Электроотрицательность

Электроотрицательность  — способность атома какого-либо химического элемента в соединении оттягивать на себя электроны связанных с ним атомов других химических элементов.

Электроотрицательность, как и прочие свойства атомов химических элементов, изменяется с увеличением порядкового номера элемента периодически:

зависимость электроотрицательности от порядкового номера элемента

График выше демонстрирует периодичность изменения электроотрицательности элементов главных подгрупп в зависимости от порядкового номера элемента.

При движении вниз по подгруппе таблицы Менделеева электроотрицательность химических элементов уменьшается, при движении вправо по периоду возрастает.

Электроотрицательность отражает неметалличность элементов: чем выше значение электроотрицательности, тем более у элемента выражены неметаллические свойства.

Степень окисления

Степень окисления – условный заряд атома химического элемента  в соединении, рассчитанный исходя из предположения, что все связи в его молекуле ионные, т.е. все связывающие электронные пары смещены к атомам с большей электроотрицательностью.

Как рассчитать степень окисления элемента в соединении?

1) Степень окисления химических элементов в простых веществах всегда равна нулю.

2) Существуют элементы, проявляющие в сложных веществах постоянную степень окисления:

Элементы, проявляющие постоянную СО

Значение постоянной СО этого элемента

Щелочные металлы, т.е. все металлы
IA группы — Li, Na, K, Rb, Cs, Fr
+1
Все элементы II группы, кроме ртути:
Be, Mg, Ca, Sr, Ba, Ra, Zn, Cd
+2
Алюминий Al +3
Фтор F -1

3) Существуют химические элементы, которые проявляют в подавляющем большинстве соединений постоянную степень окисления. К таким элементам относятся:

Элемент

Степень окисления практически во всех соединениях

Исключения

водород H +1 Гидриды щелочных и щелочно-земельных металлов, например:
степень окисления водорода -1
кислород O -2 Пероксиды водорода и металлов:
степень окисления кислорода в пероксидах
Фторид кислорода — степени окисления во фториде кислорода

4) Алгебраическая сумма степеней окисления всех атомов в молекуле всегда равна нулю. Алгебраическая сумма степеней окисления всех атомов в ионе равна заряду иона.

5) Высшая (максимальная) степень окисления равна номеру группы. Исключения, которые не попадают под это правило, — элементы побочной подгруппы I группы, элементы побочной подгруппы VIII группы, а также кислород и фтор.

Химические элементы, номер группы которых не совпадает с их высшей степенью окисления (обязательные к запоминанию)

Химический элемент

Номер группы

Высшая степень окисления

Кислород VI +2 (в OF2)
Фтор VII 0
Медь I +2
Железо VIII  +6 (например K2FeO4)

6) Низшая степень окисления металлов всегда равна нулю, а низшая степень окисления неметаллов рассчитывается по формуле:

низшая степень окисления неметалла = №группы − 8

Отталкиваясь от представленных выше правил, можно установить степень окисления химического элемента в любом веществе.

Нахождение степеней окисления элементов в различных соединениях

Пример 1

Определите степени окисления всех элементов в серной кислоте.

Решение:

Запишем формулу серной кислоты:

H2SO4

Степень окисления водорода во всех сложных веществах +1 (кроме гидридов металлов).

Степень окисления кислорода во всех сложных веществах равна  -2 (кроме пероксидов и фторида кислорода OF2). Расставим известные степени окисления:

электроотрицательность

Обозначим степень окисления серы как x:

как определять степени окисления

Молекула серной кислоты, как и молекула любого вещества, в целом электронейтральна, т.к. сумма степеней окисления всех атомов в молекуле равна нулю. Схематически это можно изобразить следующим образом:

расчет степеней окисления в H2SO4

Т.е. мы получили следующее уравнение:

уравнение для установления степени окисления серы

Решим его:

степень окисления

Таким образом, степень окисления серы в серной кислоте равна +6.

Пример 2

Определите степень окисления всех элементов в дихромате аммония.

Решение:

Запишем формулу дихромата аммония:

(NH4)2Cr2O7

Как и в предыдущем случае, мы можем расставить степени окисления водорода и кислорода:

степени окисления

Однако мы видим, что неизвестны степени окисления сразу у двух химических элементов — азота и хрома. Поэтому найти степени окисления аналогично предыдущему примеру мы не можем (одно уравнение с двумя переменными не имеет единственного решения).

Обратим внимание на то, что указанное вещество относится к классу солей и, соответственно, имеет ионное строение. Тогда справедливо можно сказать, что в состав дихромата аммония входят катионы NH4+ (заряд данного катиона можно посмотреть в таблице растворимости). Следовательно, так как в формульной единице дихромата аммония два положительных однозарядных катиона NH4, заряд дихромат-иона равен -2, поскольку вещество в целом электронейтрально. Т.е. вещество образовано катионами NH4+ и анионами Cr2O72-.

Мы знаем степени окисления водорода и кислорода. Зная, что сумма степеней окисления атомов всех элементов в ионе равна заряду, и обозначив степени окисления азота и хрома как x и y соответственно, мы можем записать:

степени окисления элементов в катионе аммония и дихромат-ионе

Т.е. мы получаем два независимых уравнения:

установление степеней окисления элементов в дихромате аммония

Решая которые, находим x и y:

нахождение степеней окисления азота и хрома в дихромате аммония

Таким образом, в дихромате аммония степени окисления азота -3, водорода +1, хрома +6, а кислорода -2.

Как определять степени окисления элементов в органических веществах можно почитать здесь.

Валентность

Валентность — число химических связей, которые образует атом элемента в химическом соединении.

Валентность атомов обозначается римскими цифрами: I, II, III и т.д.

Валентные возможности атома зависят от количества:

1) неспаренных электронов орбиталь с неспаренным электроном

2) неподеленных электронных пар на орбиталях валентных уровней орбиталь с неподеленной парой электронов

3) пустых электронных орбиталей валентного уровня вакантная орбиталь

Валентные возможности атома водорода

Изобразим электронно-графическую формулу атома водорода:

электронно-графическая формула атома водорода

Было сказано, что на валентные возможности могут влиять три фактора — наличие неспаренных электронов, наличие неподеленных электронных пар на внешнем уровне, а также наличие вакантных (пустых) орбиталей внешнего уровня. Мы видим на внешнем (и единственном) энергетическом уровне один неспаренный электрон. Исходя из этого, водород может точно иметь валентность, равную I. Однако на первом энергетическом уровне есть только один подуровень — s, т.е. атом водорода на внешнем уровне не имеет как неподеленных электронных пар, так и пустых орбиталей.

Таким образом, единственная валентность, которую может проявлять атом водорода, равна I.

Валентные возможности атома углерода

Рассмотрим электронное строение атома углерода. В основном состоянии электронная конфигурация его внешнего уровня выглядит следующим образом:

строение внешнего уровня атома углерода

Т.е. в основном состоянии на внешнем энергетическом уровне невозбужденного атома углерода находится 2 неспаренных электрона. В таком состоянии он может проявлять валентность, равную II. Однако атом углерода очень легко переходит в возбужденное состояние при сообщении ему энергии, и электронная конфигурация внешнего слоя в этом случае принимает вид:

строение внешнего уровня атома углерода в возбужденном состоянии

Несмотря на то что на процесс возбуждения атома углерода тратится некоторое количество энергии, траты с избытком компенсируются при образовании четырех ковалентных связей. По этой причине валентность IV намного более характерна для атома углерода. Так, например, валентность IV углерод имеет в молекулах углекислого газа, угольной кислоты и абсолютно всех органических веществ.

Помимо неспаренных электронов и неподеленных электронных пар на валентные возможности также влияет наличие вакантных ( 1.3.2. Электроотрицательность. Степень окисления и валентность химических элементов. ) орбиталей валентного уровня. Наличие таких орбиталей на заполняемом уровне приводит к  тому, что атом может выполнять роль акцептора электронной пары, т.е. образовывать дополнительные ковалентные связи по донорно-акцепторному механизму. Так, например, вопреки ожиданиям, в молекуле угарного газа CO связь не двойная, а тройная, что наглядно показано на следующей иллюстрации:

образование молекулы угарного газа

Резюмируя информацию по валентным возможностям атома углерода:

1) Для углерода возможны валентности II, III, IV

2) Наиболее распространенная валентность углерода в соединениях IV

3) В молекуле угарного газа CO связь тройная (!), при этом одна из трех связей образована по донорно-акцепторному механизму

Валентные возможности атома азота

Запишем электронно-графическую формулу внешнего энергетического уровня атома азота:

внешний энергетический уровень атома азота

Как видно из иллюстрации выше, атом азота в своем обычном состоянии имеет 3 неспаренных электрона, в связи с чем логично предположить о его способности проявлять валентность, равную III. Действительно, валентность, равная трём, наблюдается в молекулах аммиака (NH3), азотистой кислоты (HNO2), треххлористого азота (NCl3) и т.д.

Выше было сказано, что валентность атома химического элемента зависит не только от количества неспаренных электронов, но также и от наличия неподеленных электронных пар. Связано это с тем, что ковалентная химическая связь может образоваться не только, когда два атома предоставляют друг другу по одному электрону, но  также и тогда, когда один атом, имеющий неподеленную пару электронов — донор( 1.3.2. Электроотрицательность. Степень окисления и валентность химических элементов. ) предоставляет ее другому атому с вакантной ( 1.3.2. Электроотрицательность. Степень окисления и валентность химических элементов. ) орбиталью валентного уровня (акцептору). Т.е. для атома азота возможна также валентность IV за счет дополнительной ковалентной связи, образованной по донорно-акцепторному механизму. Так, например, четыре ковалентных связи, одна из которых образована по донорно-акцепторному механизму, наблюдается при образовании катиона аммония:

образование катиона аммония

Несмотря на то что одна из ковалентных связей образуется по донорно-акцепторному механизму, все связи N-H в катионе аммония абсолютно идентичны и ничем друг от друга не отличаются.

Валентность, равную V, атом азота проявлять не способен. Связано это с тем, что для атома азота невозможен переход в возбужденное состояние, при котором происходит распаривание двух электронов с переходом одного из них на свободную орбиталь, наиболее близкую по уровню энергии. Атом азота не имеет d-подуровня, а переход на 3s-орбиталь энергетически настолько затратен, что затраты энергии не покрываются образованием новых связей. Многие  могут задаться вопросом, а какая же тогда валентность у азота, например, в молекулах азотной кислоты HNO3 или оксида азота N2O5? Как ни странно, валентность там тоже IV, что видно из нижеследующих структурных формул:

строение молекул азотной кислоты и N2O5

Пунктирной линией на иллюстрации изображена так называемая делокализованная π-связь. По этой причине концевые связи NO можно назвать «полуторными». Аналогичные полуторные связи имеются также в молекуле озона O3, бензола C6H6 и т.д.

em>Резюмируя информацию по валентным возможностям атома азота:

1) Для азота возможны валентности I, II, III и IV

2) Валентности V у азота не бывает!

3) В молекулах азотной кислоты и оксида азота N2O5 азот имеет валентность IV, а степень окисления +5 (!).

4) В соединениях, в которых атом азота четырехвалентен, одна из ковалентных связей образована по донорно-акцепторному механизму (соли аммония NH4+, азотная кислота и д.р).

Валентные возможности фосфора

Изобразим электронно-графическую формулу внешнего энергетического уровня атома фосфора:

валентные возможности фосфора

Как мы видим, строение внешнего слоя у атома фосфора в основном состоянии и атома азота одинаково, в связи с чем логично ожидать для атома фосфора так же, как и для атома азота, возможных валентностей, равных I, II, III и IV, что и наблюдается на практике.

Однако в отличие от азота, атом фосфора имеет на внешнем энергетическом уровне еще и d-подуровень с 5-ю вакантными орбиталями.

В связи с этим он способен переходить в возбужденное состояние, распаривая электроны 3s-орбитали:

электроотрицательность

Таким образом, недоступная для азота валентность V для атома фосфора возможна. Так, например, валентность, равную пяти, атом фосфора имеет в молекулах таких соединений, как фосфорная кислота, галогениды фосфора (V), оксид фосфора (V) и т.д.

Валентные возможности атома кислорода

Электронно-графическая формула внешнего энергетического уровня атома кислорода имеет вид:

внешний электронный уровень атома кислорода

Мы видим на 2-м уровне два неспаренных электрона, в связи с чем для кислорода возможна валентность II. Следует отметить, что данная валентность атома кислорода наблюдается практически во всех соединениях. Выше при рассмотрении валентных возможностей атома углерода мы обсудили образование молекулы угарного газа. Связь в молекуле CO тройная, следовательно, кислород там трехвалентен (кислород — донор электронной пары).

Из-за того что атом кислорода не имеет на внешнем уровне d-подуровня, распаривание электронов s и p-орбиталей невозможно, из-за чего валентные возможности атома кислорода ограничены по сравнению с другими элементами его подгруппы, например, серой.

Таким образом, кислород практически всегда имеет валентность, равную II, однако в некоторых частицах он трехвалентен, в частности, в молекуле угарного газа C≡O. В случае, когда кислород имеет валентность III, одна из ковалентных связей образована по донорно-акцепторному механизму.

Валентные возможности атома серы

Внешний энергетический уровень атома серы в невозбужденном состоянии:

внешний электронный уровень невозбужденного атома серы

У атома серы, как и у атома кислорода, в обычном состоянии два неспаренных электрона, поэтому мы можем сделать вывод о том, что для серы возможна валентность, равная двум. И действительно, валентность II сера имеет, например, в молекуле сероводорода  H2S.

Как мы видим, у атома серы на внешнем уровне появляется d-подуровень с вакантными орбиталями. По этой причине атом серы способен расширять свои валентные возможности в отличие от кислорода за счет перехода в возбужденные состояния. Так, при распаривании неподеленной электронной пары 3p-подуровня атом серы приобретает электронную конфигурацию внешнего уровня следующего вида:

валентность серы 4

В таком состоянии атом серы имеет 4 неспаренных электрона, что говорит нам о возможности проявления атомами серы валентности, равной IV. Действительно, валентность IV сера имеет в молекулах SO2, SF4, SOCl2 и т.д.

При распаривании второй неподеленной электронной пары, расположенной на 3s-подуровне, внешний энергетический уровень приобретает конфигурацию:

валентность серы VI

В таком состоянии уже становится возможным проявление валентности VI. Примером соединений с VI-валентной серой являются SO3, H2SO4, SO2Cl2 и т.д.

Аналогично можно рассмотреть валентные возможности остальных химических элементов.

Комментариев 24
  1. Валентина

    Здравствуйте, Сергей! В схеме образования связи в молекуле CO поясните, пожалуйста, там сместилась стрелка или действительно 2 s электронная пара уходит на р- орбиталь? Я считала, что неподеленная 2р пара кислорода с «пустой» 2р углерода образует общую электронную орбиталь.

    • Сергей Широкопояс

      Данная иллюстрация взята из литературы. Я пока не готов ответить на Ваш вопрос. Встречал оба варианта в литературе.

  2. Анастасия

    Здравствуйте. Подскажите, пожалуйста, почему в таблице «Химические элементы, номер группы которых не совпадает с их высшей степенью окисления (обязательные к запоминанию)» нет азота. Он находится в 5 группе, но высшая СТОК у него никогда не равна 5. Или я ошибаюсь?
    Спасибо за ответ.

    • Сергей Широкопояс

      Здравствуйте, Анастасия!
      Вы ошибаетесь — высшая ВАЛЕНТНОСТЬ азота равна IV (не может быть равна V), а высшая степень окисления азота рана +5.

  3. Рустам

    Здравствуйте. Подскажите, пожалуйста, является ли SiH4 веществом, в котором водород проявляет степень окисления -1?

    • Сергей Широкопояс

      есть две разные шкалы электроотрицательности, по одной водород более электроотрицателен, а по другой — кремний.
      Связано это с тем что значения близки.
      Я лично рекомендую считать кремний более электроотрицательными, так как тогда это не вносит путаницы в гидролиз силицидов

  4. рири

    Получается, что при донорно-акцепторном механизме целых два электрона переходят на орбиталь катиона? И при этом он получает отрицательный заряд? Или эти два электрона из неподеленной пары будут все же общими и заряды останутся прежними?

  5. Женя

    А как определить степень окисления в As2S3, сульфид мышьяка (3), неизвестны степени окисления двух обоих элементов?

  6. Кристина

    Подскажите чем электроотрицательность ионов отличается от эо атомов?Почему радиус иона алюминия 3+ мерьше фтора 1-,если эо фтора больше следовательно радиус должен быть меньше

    • Соавтор проекта Борисов И.С.

      Добрый день! Говорить об электроотрицательности уместно только в случае атомов, но не ионов. Радиус иона алюминия меньше, чем радиус фторид-иона, по причине большего заряда ядра (+13 против +9) и, как следствие, более сильного притяжения к нему электронных оболочек.

  7. Яна

    Здравствуйте!
    Подскажите, пожалуйста, в каких соединениях азот проявляет валентность I ?
    Какая валентность азота в N2O — II и IV ?

    • Соавтор проекта Борисов И.С.

      Добрый день! В подобных соединениях сложно сделать выводы без детального понимания структуры молекулы. Поскольку атом азота имеет максимальную валентность IV, то именно ее и присвоим центральному атому азота. Второй атом, условно, имеет валентность III. Но имеем ввиду, что возможно две резонансных формы: с зарядом на атоме азота и на атоме кислорода.

      • Яна

        Приведите, пожалуйста, пример соединения азота с валентностью I.
        Заранее спасибо!

        • Соавтор проекта Борисов И.С.

          А вот тут начинается самое интересное. Мы в рамках школы условно считаем, что в N2O валентность азота (I). Если покопаться глубже, то найти реальное соединение азота с такой валентностью не удастся. Есть ряд промежуточных частиц в механизмах органических реакций под названием нитрены. Их формулу можно представить в виде R-N. Однако все это очень далеко от нас. Если имеете целью сдать экзамен или подготовить к нему кого-то, то «лишние» знания могут быть даже во вред.

        • Голикова О.С

          Здравствуйте! Подскажите пожалуйста, как атом кислорода в азотной кислоте переходит в возбуждение состояние

          • Соавтор проекта Борисов И.С.

            Добрый день! Образование связей в молекуле азотной кислоты — отдельная история, которую сложно пояснить в рамках школы и ЕГЭ.

  8. Inna

    Здравствуйте! Подскажите, пожалуйста, число валентных электронов атома всегда совпадает с номером группы?

    • Соавтор проекта Борисов И.С.

      Добрый день! Нет, не всегда. Понятие может стать весьма условным при рассмотрении тех же элементов побочных подгрупп. Советую запомнить, что для элементов основных подгрупп валентными будут электроны внешнего уровня, а побочных — внешнего уровня + d-подуровня предыдущего уровня. Так надежнее.

  9. Настя

    Добрый день! Подскажите, пожалуйста, связаны ли как-то валентности и координационные числа элементов? (Речь о структурах минералов)

    • Соавтор проекта Борисов И.С.

      Добрый день! Для понимания координационного числа и откуда оно берется советовал бы рассмотреть электронное строение центрального атома, наличие или отсутствие пустых орбиталей на валентных уровнях. В деталях не поясню, очень емкий вопрос.

  10. ольга

    Добрый день! Подскажите, скольки валентен кислород в азотной кислоте, где связь идет по донорно-акцепторному механизму?

    • Соавтор проекта Борисов И.С.

      Добрый день! Если принять для азотной кислоты наличие двух резонансных форм, то у одного из атомов кислорода будет одна ковалентная связь только. Если принять усредненную структуру, то имеем два атома кислорода, условно, с полуторной связью. Поэтому однозначно сказать, какая у всех атомов кислорода валентность, мы не можем в рамках простейших школьных представлений. Затруднительно.

  11. Юлия

    Здравствуйте! Подскажите, пожалуйста, почему при возбуждении атома фосфора электрон от недавней неподеленной пары 3s-орбитали переходит на 3d-орбиталь, а не на 4s? Казалось бы, 4s имеет меньшую сумму n+l и, соответственно, меньшую энергию.
    Заранее спасибо за ответ!

    • Соавтор проекта Борисов И.С.

      Добрый день! В рамках ЕГЭ считаем, что в возбуждении участвует только внешний уровень.

Добавить комментарий

Ваш e-mail не будет опубликован.