Характерные химические свойства оксидов: основных, амфотерных, кислотных.

2.4. Характерные химические свойства оксидов: основных, амфотерных, кислотных.

Прежде чем начать говорить про химические свойства оксидов, нужно вспомнить о том, что все оксиды делятся на 4 типа, а именно основные, кислотные, амфотерные и несолеобразующие. Для того чтобы определить тип какого-либо оксида, прежде всего нужно понять — оксид металла или неметалла перед вами, а затем воспользоваться алгоритмом (его надо выучить!), представленным в следующей таблице:

Оксид неметалла Оксид металла
1) Степень окисления неметалла +1 или +2 Вывод: оксид несолеобразующий Исключение: Cl2O не относится к несолеобразующим оксидам 1) Степень окисления металла +1 или +2 Вывод: оксид металла — основный Исключение: BeO, ZnO и PbO не относятся к основным оксидам
2) Степень окисления больше либо равна +3 Вывод: оксид кислотный Исключение: Cl2O относится к кислотным оксидам, несмотря на степень окисления хлора +1 2) Степень окисления металла +3 или +4 Вывод: оксид амфотерный Исключение: BeO, ZnO и PbO амфотерны, несмотря на степень окисления +2 у металлов 3) Степень окисления металла +5, +6, +7 Вывод: оксид кислотный

Помимо типов оксидов, указанных выше, введем также еще два подтипа основных оксидов, исходя из их химической активности, а именно активные основные оксиды и малоактивные основные оксиды.

  • К активным основным оксидам отнесем оксиды щелочных и щелочноземельных металлов (все элементы IA и IIA групп, кроме водорода H, бериллия Be и магния Mg). Например, Na2O, CaO, Rb2O, SrO и т.д.
  • К малоактивным основным оксидам отнесем все основные оксиды, которые не попали в список активных основных  оксидов. Например, FeO, CuO, CrO и т.д.

Логично предположить, что активные основные оксиды часто вступают в те реакции, в которые не вступают малоактивные.

Следует отметить, что несмотря на то что фактически вода является оксидом неметалла (H2O), обычно ее свойства рассматривают в отрыве от свойств иных оксидов. Обусловлено это ее специфически огромным распространением в окружающем нас мире, в связи с чем в большинстве случаев вода является не реагентом, а средой, в которой может осуществляться бесчисленное множество химических реакций. Однако нередко она принимает и непосредственное участие в различных превращениях, в частности, некоторые группы оксидов с ней реагируют.

Какие оксиды реагируют с водой?

Из всех оксидов с водой реагируют только:

1) все активные основные оксиды (оксиды ЩМ и ЩЗМ);

2) все кислотные оксиды, кроме диоксида кремния (SiO2);

т.е. из вышесказанного следует, что с водой точно не реагируют:

1) все малоактивные основные оксиды;

2) все амфотерные оксиды;

3) несолеобразующие оксиды (NO, N2O, CO, SiO).

Примечание:

Оксид магния медленно реагирует с водой при кипячении. Без сильного нагревания реакция MgO с H2O не протекает.

Способность определить то, какие оксиды могут реагировать с водой даже без умения писать соответствующие уравнения реакций, уже позволяет получить баллы за некоторые вопросы тестовой части ЕГЭ.

Теперь давайте разберемся, как же все-таки те или иные оксиды реагируют с водой, т.е. научимся писать соответствующие уравнения реакций.

Активные основные оксиды, реагируя с водой, образуют соответствующие им гидроксиды. Напомним, что соответствующим оксиду металла является такой гидроксид, который содержит металл в той же степени окисления, что и оксид. Так, например, при реакции с водой активных основных оксидов K+12O и Ba+2O образуются соответствующие им гидроксиды K+1OH и Ba+2(OH)2:

K2O + H2O = 2KOH – гидроксид калия

BaO + H2O = Ba(OH)2 – гидроксид бария

Все гидроксиды, соответствующие активным основным оксидам (оксидам ЩМ и ЩЗМ), относятся к щелочам. Щелочами называют все хорошо растворимые в воде гидроксиды металлов, а также малорастворимый гидроксид кальция Ca(OH)2 (как исключение).

Взаимодействие кислотных оксидов с водой так же, как и реакция активных основных оксидов с водой, приводит к образованию соответствующих гидроксидов. Только в случае кислотных оксидов им соответствуют не основные, а кислотные гидроксиды, чаще называемые кислородсодержащими кислотами. Напомним, что соответствующей кислотному оксиду является такая кислородсодержащая кислота, которая содержит кислотообразующий элемент в той же степени окисления, что и в оксиде.

Таким образом, если мы, например, хотим  записать уравнение взаимодействия кислотного оксида SO3 с водой, прежде всего мы должны вспомнить основные, изучаемые в рамках школьной программы, серосодержащие кислоты. Таковыми являются сероводородная H2S, сернистая H2SO3 и серная H2SO4 кислоты. Cероводородная кислота H2S, как легко заметить, не является кислородсодержащей, поэтому ее образование при взаимодействии SO3 с водой можно сразу исключить. Из кислот H2SO3 и H2SO4 серу в степени окисления +6, как в оксиде SO3, содержит только серная кислота H2SO4. Поэтому именно она и будет образовываться в реакции SO3 с водой:

H2O + SO3 = H2SO4

Аналогично оксид N2O5, содержащий азот в степени окисления +5, реагируя с водой, образует азотную кислоту HNO3, но ни в коем случае не азотистую HNO2, поскольку  в азотной кислоте степень окисления азота, как и в N2O5, равна +5, а в азотистой — +3:

N+52O5 + H2O = 2HN+5O3

Исключение:

Оксид азота (IV) (NO2) является оксидом неметалла в степени окисления +4, т.е. в соответствии с алгоритмом, описанным в таблице в самом начале данной главы, его нужно отнести к кислотным оксидам. Однако не существует такой кислоты, которая содержала бы азот в степени окисления +4.

В случае оксида NO2 принято считать, что ему соответствуют сразу две кислоты, поскольку его взаимодействие с водой приводит к одновременному образованию двух кислот:

2NO2 + H2O = HNO2 + HNO3

Взаимодействие оксидов друг с другом

Прежде всего нужно четко усвоить тот факт, что среди солеобразующих оксидов (кислотных, основных, амфотерных) практически никогда не протекают реакции между оксидами одного класса, т.е. в подавляющем большинстве случаев невозможно взаимодействие:

1) основный оксид + основный оксид ≠

2) кислотный оксид + кислотный оксид  ≠

3) амфотерный оксид + амфотерный оксид  ≠

В то время, как практически всегда возможно взаимодействие между оксидами, относящимися к разным типам, т.е. практически всегда протекают реакции между:

1) основным оксидом и кислотным оксидом;

2) амфотерным оксидом и кислотным оксидом;

3) амфотерным оксидом и основным оксидом.

В результате всех таких взаимодействий всегда продуктом является средняя (нормальная) соль.

Рассмотрим все указанные пары взаимодействий более детально.

В результате взаимодействия:

MexOy + кислотный оксид, где MexOy – оксид металла (основный или амфотерный)

образуется соль, состоящая из катиона металла Me (из исходного MexOy) и кислотного остатка кислоты, соответствующей кислотному оксиду.

Для примера попробуем записать уравнения взаимодействия следующих пар реагентов:

Na2O + P2O5   и    Al2O3 + SO3

В первой паре реагентов мы видим основный оксид (Na2O) и кислотный оксид (P2O5). Во второй – амфотерный оксид (Al2O3) и кислотный оксид (SO3).

Как уже было сказано, в результате взаимодействия основного/амфотерного оксида с кислотным образуется соль, состоящая из катиона металла (из исходного основного/амфотерного оксида) и кислотного остатка кислоты, соответствующей исходному кислотному оксиду.

Таким образом, при взаимодействии Na2O и P2O5 должна образоваться соль, состоящая из катионов Na+ (из Na2O) и кислотного остатка PO43-, поскольку оксиду P+52O5 соответствует кислота H3P+5O4. Т.е. в результате такого взаимодействия образуется фосфат натрия:

3Na2O + P2O5 = 2Na3PO4 — фосфат натрия

В свою очередь, при взаимодействии Al2O3 и SO3 должна образоваться соль, состоящая из катионов Al3+ (из Al2O3) и кислотного остатка SO42-, поскольку оксиду S+6O3 соответствует кислота H2S+6O4. Таким образом, в результате данной реакции получается сульфат алюминия:

Al2O3 + 3SO3 = Al2(SO4)3 — сульфат алюминия

Более специфическим является взаимодействие  между амфотерными и основными оксидами. Данные реакции осуществляют при высоких температурах, и их протекание возможно благодаря тому, что амфотерный оксид фактически берет на себя роль кислотного. В результате такого взаимодействия образуется соль специфического состава, состоящая из катиона металла, образующего исходный основный оксид и «кислотного остатка»/аниона, в состав которого входит металл из амфотерного оксида. Формулу такого «кислотного остатка»/аниона в общем виде можно записать как MeO2x, где Me – металл из амфотерного оксида, а х = 2 в случае амфотерных оксидов с общей формулой вида Me+2O (ZnO, BeO, PbO) и x = 1 – для амфотерных оксидов с общей формулой вида Me+32O3 (например, Al2O3, Cr2O3 и Fe2O3).

Попробуем записать в качестве примера уравнения взаимодействия

ZnO + Na2O и Al2O3 + BaO

В первом случае ZnO является амфотерным оксидом с общей формулой Me+2O, а Na2O – типичный основный оксид. Согласно сказанному выше, в результате их взаимодействия должна образоваться соль, состоящая из катиона металла, образующего основный оксид, т.е. в нашем случае Na+ (из Na2O) и «кислотного остатка»/аниона c формулой ZnO22-, поскольку амфотерный оксид имеет общую формулу вида Me+2O. Таким образом, формула получаемой соли при соблюдении условия электронейтральности одной ее структурной единицы («молекулы») будет иметь вид Na2ZnO2:

ZnO + Na2O =to=> Na2ZnO2

В случае взаимодействующей пары реагентов Al2O3 и BaO первое вещество является амфотерным оксидом с общей формулой вида Me+32O3, а второе — типичным основным оксидом. В этом случае образуется соль, содержащая катион металла из основного оксида, т.е. Ba2+ (из BaO) и «кислотного остатка»/аниона AlO2. Т.е. формула получаемой соли при соблюдении условия электронейтральности одной ее структурной единицы («молекулы») будет иметь вид Ba(AlO2)2, а само уравнение взаимодействия запишется как:

Al2O3 + BaO =to=> Ba(AlO2)2

Как мы уже писали выше, практически всегда протекает реакция:

MexOy + кислотный оксид,

где MexOy – либо основный, либо амфотерный оксид металла.

Однако следует запомнить два «привередливых» кислотных оксида – углекислый газ (CO2) и сернистый газ (SO2). «Привередливость» их заключается в том, что несмотря на явные кислотные свойства, активности CO2 и SO2 недостаточно для их взаимодействия с малоактивными основными и амфотерными оксидами. Из оксидов металлов они реагируют только с активными основными оксидами (оксидами ЩМ и ЩЗМ). Так, например, Na2O и BaO, являясь активными основными оксидами, могут с ними реагировать:

CO2 + Na2O = Na2CO3

SO2 + BaO = BaSO3

В то время, как оксиды CuO и Al2O3, не относящиеся к активным основным оксидам, в реакцию с CO2 и SO2 не вступают:

CO2 + CuO

CO2 + Al2O3 

SO2 + CuO

SO2 + Al2O3 

Взаимодействие оксидов с кислотами

С кислотами реагируют основные и амфотерные оксиды. При этом образуются соли и вода:

FeO + H2SO4 = FeSO4 + H2O

Несолеобразующие оксиды не реагируют с кислотами вообще, а кислотные оксиды не реагируют с кислотами в большинстве случаев.

Когда все-таки кислотный оксид реагирует с кислотой?

Решая часть ЕГЭ с вариантами ответа, вы должны условно считать, что кислотные оксиды не реагируют ни с кислотными оксидами, ни с кислотами, за исключением следующих случаев:

1) диоксид кремния, будучи кислотным оксидом, реагирует с плавиковой кислотой, растворяясь в ней. В частности, благодаря этой реакции в плавиковой кислоте можно растворить стекло. В случае избытка HF уравнение реакции имеет вид:

SiO2 + 6HF = H2[SiF6] + 2H2O,

а в случае недостатка HF:

SiO2 + 4HF = SiF4 + 2H2O

2) SO2, будучи кислотным оксидом, легко реагирует с сероводородной кислотой H2S по типу сопропорционирования:

S+4O2 + 2H2S-2 = 3S0 + 2H2O

3) Оксид фосфора (III) P2O3 может реагировать с кислотами-окислителями, к которым относятся концентрированная серная кислота и азотная кислота любой концентрации. При этом степень окисления фосфора повышается от значения +3 до +5:

P2O3 + 2H2SO4 + H2O =to=> 2SO2 + 2H3PO4
    (конц.)            
3P2O3 + 4HNO3 + 7H2O =to=> 4NO↑ + 6H3PO4
    (разб.)            
P2O3 + 4HNO3 + H2O =to=> 2H3PO4 + 4NO2
    (конц.)            

4) Оксид серы (IV) SO2 может быть окислен азотной кислотой, взятой в любой концентрации. При этом степень окисления серы повышается с +4 до +6.

2HNO3 + SO2 =to=> H2SO4 + 2NO2
(конц.)            
2HNO3 + 3SO2 + 2H2O =to=> 3H2SO4 + 2NO↑
(разб.)                

Взаимодействие оксидов с гидроксидами металлов

С гидроксидами металлов как основными, так и амфотерными реагируют кислотные оксиды. При этом образуется соль, состоящая из катиона металла (из исходного гидроксида металла) и кислотного остатка кислоты, соответствующей кислотному оксиду.

SO3 + 2NaOH = Na2SO4 + H2O

Кислотные оксиды, которым соответствуют многоосновные кислоты, с щелочами могут образовывать как нормальные, так и кислые соли:

CO2 + 2NaOH = Na2CO3 + H2O

CO2 + NaOH = NaHCO3

P2O5 + 6KOH = 2K3PO4 + 3H2O

P2O5 + 4KOH = 2K2HPO4 + H2O

P2O5 + 2KOH + H2O = 2KH2PO4

«Привередливые» оксиды CO2 и SO2, активности которых, как уже было сказано, не хватает для протекания их реакции с малоактивными основными и амфотерными оксидами, тем не менее, реагируют с большей частью соответствующих им гидроксидов металлов. Точнее, углекислый и сернистый газы взаимодействуют с нерастворимыми гидроксидами  в виде их суспензии в воде. При этом образуются только основные соли, называемые гидроксокарбонатами и гидроксосульфитами, а образование средних (нормальных) солей невозможно:

2Zn(OH)2 + CO2 = (ZnOH)2CO3 + H2O (в растворе)

2Cu(OH)2 + CO2 = (CuOH)2CO3 + H2O (в растворе)

Однако с гидроксидами металлов в степени окисления +3, например, такими, как Al(OH)3, Cr(OH)3 и т.д., углекислый и сернистый газ не реагируют вовсе.

Следует отметить также особую инертность диоксида кремния (SiO2), в природе наиболее часто встречаемого в виде обычного песка. Данный оксид является кислотным, однако из гидроксидов металлов способен реагировать только с концентрированными (50-60%) растворами щелочей,  а также с чистыми (твердыми) щелочами при сплавлении. При этом образуются силикаты:

2NaOH + SiO2 =to=> Na2SiO3 + H2O

Амфотерные оксиды из гидроксидов металлов реагируют только со щелочами (гидроксидами щелочных и щелочноземельных металлов). При этом при проведении реакции в водных растворах образуются растворимые комплексные соли:

ZnO + 2NaOH + H2O = Na2[Zn(OH)4] — тетрагидроксоцинкат натрия

BeO + 2NaOH + H2O = Na2[Be(OH)4] — тетрагидроксобериллат натрия

Al2O3 + 2NaOH + 3H2O = 2Na[Al(OH)4] — тетрагидроксоалюминат натрия

А при сплавлении этих же амфотерных оксидов со щелочами получаются соли, состоящие из катиона щелочного или щелочноземельного металла и аниона вида MeO2x, где x = 2 в случае амфотерного оксида типа Me+2O и x = 1 для амфотерного оксида вида Me2+2O3:

ZnO + 2NaOH =to=> Na2ZnO2 + H2O

BeO + 2NaOH =to=> Na2BeO2 + H2O

Al2O3 + 2NaOH =to=> 2NaAlO2 + H2O

Cr2O3 + 2NaOH =to=> 2NaCrO2 + H2O

Fe2O3 + 2NaOH =to=> 2NaFeO2 + H2O

Следует отметить, что соли, получаемые сплавлением амфотерных оксидов с твердыми щелочами, могут быть легко получены из растворов соответствующих комплексных солей их упариванием и последующим прокаливанием:

Na2[Zn(OH)4] =to=> Na2ZnO2 + 2H2O

Na[Al(OH)4] =to=> NaAlO2 + 2H2O

Взаимодействие оксидов со средними солями

Чаще всего средние соли с оксидами не реагируют.

Однако следует выучить следующие исключения из данного правила, часто встречающиеся на экзамене.

Одним из таких исключений является то, что амфотерные оксиды, а также диоксид кремния (SiO2) при их сплавлении с сульфитами и карбонатами вытесняют из последних сернистый (SO2) и углекислый (CO2) газы соответственно. Например:

Al2O3 + Na2CO3 =to=> 2NaAlO2 + CO2

SiO2 + K2SO3 =to=> K2SiO3 + SO2

Также к реакциям оксидов с солями можно условно отнести взаимодействие сернистого и углекислого газов с водными растворами или взвесями соответствующих солей — сульфитов и карбонатов, приводящее к образованию кислых солей:

Na2CO3 + CO2 + H2O = 2NaHCO3

CaCO3 + CO2 + H2O = Ca(HCO3)2

Также сернистый газ при пропускании его через водные растворы или взвеси карбонатов вытесняет из них углекислый газ благодаря тому, что сернистая кислота является более сильной и устойчивой кислотой, чем угольная:

K2СO3 + SO2 = K2SO3 + CO2

ОВР с участием оксидов

Восстановление оксидов металлов и неметаллов

Аналогично тому, как металлы могут реагировать с растворами солей менее активных металлов, вытесняя последние в свободном виде, оксиды металлов при нагревании также способны реагировать с более активными металлами.

Напомним, что сравнить активность металлов можно либо используя ряд активности металлов, либо, если одного или сразу двух металлов нет в ряду активности, по их положению относительно друг друга в таблице Менделеева: чем ниже и левее металл, тем он более активен. Также полезно помнить, что любой металл из семейства ЩМ и ЩЗМ будет всегда активнее металла, не являющегося представителем ЩМ или ЩЗМ.

В частности, на взаимодействии металла с оксидом менее активного металла основан метод алюмотермии, используемый в промышленности для получения таких  трудновосстанавливаемых металлов, как хром и ванадий:

Cr2O3 + 2Al =to=> Al2O3 + 2Cr

При протекании процесса алюмотермии образуется колоссальное количество тепла, а температура реакционной смеси может достигать более 2000oC.

Также оксиды практически всех металлов, находящихся в ряду активности правее алюминия, могут быть восстановлены до свободных металлов водородом (H2), углеродом (C) и угарным газом (CO) при нагревании. Например:

Fe2O3 + 3CO =to=> 2Fe + 3CO2

CuO + C =to=> Cu + CO

FeO + H2 =to=> Fe + H2O

Следует отметить, что в случае, если металл может иметь несколько степеней окисления, при недостатке используемого восстановителя возможно также неполное восстановление оксидов.  Например:

Fe2O3 + CO =to=> 2FeO + CO2

4CuO + C  =to=> 2Cu2O + CO2

Оксиды активных металлов (щелочных, щелочноземельных, магния и алюминия) с водородом и угарным газом не реагируют.

Однако оксиды активных металлов реагируют с углеродом, но иначе, чем оксиды менее активных металлов.

В рамках программы ЕГЭ, чтобы не путаться, следует считать, что в результате реакции оксидов активных металлов (до Al включительно) с углеродом образование свободного ЩМ, ЩЗМ, Mg, а также Al невозможно. В таких случаях происходит образование карбида металла и угарного газа. Например:

2Al2O3 + 9C  =to=> Al4C3 + 6CO

CaO + 3C  =to=> CaC2 + CO

Оксиды неметаллов нередко могут быть восстановлены металлами до свободных неметаллов. Так, например, оксиды углерода и кремния при нагревании реагируют с щелочными,  щелочноземельными металлами и магнием:

CO2 + 2Mg =to=> 2MgO + C

SiO2 + 2Mg =to=> Si + 2MgO

При избытке магния последнее взаимодействие может приводить также к образованию силицида магния Mg2Si:

SiO2 + 4Mg =to=> Mg2Si + 2MgO

Оксиды азота могут быть относительно легко восстановлены даже менее активными металлами, например, цинком или медью:

Zn + 2NO =to=> ZnO + N2

2NO2 + 4Cu =to=> 4CuO + N2

Взаимодействие оксидов с кислородом

Для того чтобы в заданиях реального ЕГЭ суметь ответить на вопрос, реагирует ли какой-либо оксид с кислородом (O2), прежде всего нужно запомнить, что оксиды, способные реагировать с кислородом (из тех, что могут попасться вам на самом экзамене) могут образовать только химические элементы из списка:

углерод С, кремний Si, фосфор P, сера S, медь Cu, марганец Mn, железо Fe, хром Cr, азот N

Встречающиеся в реальном ЕГЭ оксиды любых других химических элементов с кислородом  реагировать не будут (!).

Для более наглядного удобного запоминания перечисленных выше списка элементов, на мой взгляд, удобна следующая иллюстрация:

Все химические элементы, способные образовывать оксиды, реагирующие с кислородом (из встречающегося на экзамене)

В первую очередь, среди перечисленных элементов следует рассмотреть азот N, т.к. отношение его оксидов к кислороду заметно отличается от оксидов остальных элементов приведенного выше списка.

Следует четко запомнить тот факт, что всего азот способен образовать пять оксидов, а именно:

Из всех оксидов азота с кислородом может реагировать только NO. Данная реакция протекает очень легко при смешении NO как с чистым кислородом, так и с воздухом. При этом наблюдается быстрое изменение окраски газа с бесцветной (NO) на бурую (NO2):

2NO + O2 = 2NO2
бесцветный       бурый

Для того чтобы дать ответ на вопрос — реагирует ли с кислородом какой-либо оксид любого другого из перечисленных выше химических элементов (т.е. С, Si, P, S, Cu, Mn, Fe, Cr) — прежде всего обязательно нужно запомнить их основные степени окисления (СО). Вот они:

элемент С Si P S Cu Cr Mn Fe
его основные положительные СО +2, +4 +2, +4 +3, +5 +4, +6 +1, +2 +2, +3, +6 +2, +4, +6, +7 +2, +3, +6

Далее нужно запомнить тот факт, что из возможных оксидов указанных выше химических элементов, с кислородом будут реагировать только те, которые содержат элемент в минимальной, среди указанных выше, степени окисления. При этом степень окисления элемента повышается до ближайшего положительного значения из возможных:

элемент

Отношение его оксидов  к кислороду

С

Минимальная среди основных положительных степеней окисления углерода равна +2, а ближайшая к ней положительная — +4. Таким образом, с кислородом из оксидов C+2O и C+4O2 реагирует только CO. При этом протекает реакция:

2C+2O + O2 =to=>  2C+4O2

CO2 + O2 — реакция невозможна в принципе, т.к. +4 – высшая степень окисления углерода.

Si

Минимальная среди основных положительных степеней окисления кремния равна +2, а ближайшая к ней положительная — +4. Таким образом, с кислородом из оксидов Si+2O и Si+4O2 реагирует только SiO. Из-за некоторых особенностей оксидов SiO и SiO2 возможно окисление лишь части атомов кремния в оксиде Si+2O. Т.е. в результате его взаимодействия с кислородом, образуется смешанный оксид, содержащий как кремний в степени окисления +2, так и кремний в степени окисления +4, а именно Si2O3 (Si+2O·Si+4O2):

4Si+2O + O2 =to=> 2Si+2,+42O3 (Si+2O·Si+4O2)

SiO2 + O2 — реакция невозможна в принципе, т.к. +4 – высшая степень окисления кремния.

P

Минимальная среди основных положительных степеней окисления фосфора равна +3, а ближайшая к нему положительная — +5. Таким образом, с кислородом из оксидов P+32O3 и P+52O5  реагирует только P2O3. При этом протекает реакция доокисления фосфора кислородом от степени окисления +3 до степени окисления +5:

P+32O3 + O2 =to=> P+52O5

P+52O5 + O2 — реакция невозможна в принципе, т.к. +5 – высшая степень окисления фосфора.

S

Минимальная среди основных положительных степеней окисления серы равна +4, а ближайшая к ней по значению положительная — +6. Таким образом, с кислородом из оксидов S+4O2, S+6O3 реагирует только SO2. При этом протекает реакция:

2S+4O2 + O2 =to=> 2S+6O3

2S+6O3 + O2 — реакция невозможна в принципе, т.к. +6 – высшая степень окисления серы.

Cu

Минимальная среди положительных степеней окисления меди равна +1, а ближайшая к ней по значению — положительная (и единственная) +2. Таким образом, с кислородом из оксидов Cu+12O, Cu+2O реагирует только Cu2O. При этом протекает реакция:

2Cu+12O + O2 =to=>  4Cu+2O

CuO + O2 — реакция невозможна в принципе, т.к. +2 – высшая степень окисления меди.

Cr

Минимальная среди основных положительных степеней окисления хрома равна +2, а ближайшая к ней по значению положительная равна +3. Таким образом, с кислородом из оксидов Cr+2O, Cr+32O3 и  Cr+6O3 реагирует только CrO, при этом окисляясь кислородом до соседней (из возможных) положительной степени окисления, т.е. +3:

4Cr+2O + O2 =to=>  2Cr+32O3

Cr+32O3 + O2 — реакция не протекает, несмотря на то что существует оксид хрома и в большей, чем +3, степени окисления (Cr+6O3). Невозможность протекания данной реакции связана с тем, что требуемый для ее гипотетического осуществления нагрев сильно превышает температуру разложения оксида CrO3.

Cr+6O3 + O2 ≠ — данная реакция не может протекать в принципе, т.к. +6 – высшая степень окисления хрома.

Mn

Минимальная среди основных положительных степеней окисления марганца равна +2, а ближайшая к ней положительная — +4. Таким образом, с кислородом из возможных оксидов Mn+2O, Mn+4O2, Mn+6O3 и Mn+72O7 реагирует только MnO, при этом окисляясь кислородом до соседней (из возможных) положительной степени окисления, т.е. +4:

2Mn+2O + O2 =to=> 2Mn+4O2

в то время, как:

Mn+4O2 + O2и Mn+6O3 + O2 — реакции не протекают, несмотря на то что существует оксид марганца Mn2O7, содержащий Mn в большей, чем +4 и +6, степени окисления. Связанно это с тем, что требуемый для дальнейшего гипотетического окисления оксидов Mn+4O2 и Mn+6O3 нагрев существенно превышает температуру разложения получаемых оксидов MnO3 и Mn2O7.

Mn+72O7 + O2 — данная реакция невозможна  в принципе, т.к. +7 – высшая степень окисления марганца.

Fe

Минимальная среди основных положительных степеней окисления железа равна +2, а ближайшая к ней среди возможных — +3. Несмотря на то что для железа существует степень окисления +6, кислотного оксида FeO3, впрочем, как и соответствующей ему «железной» кислоты не существует.

Таким образом, из оксидов железа с кислородом могут реагировать только те оксиды, которые содержат Fe в степени окисления +2. Это либо оксид Fe+2O, либо смешанный оксид железа Fe+2,+33O4 (железная окалина):

4Fe+2O + O2 =to=> 2Fe+32O3 или

6Fe+2O + O2 =to=> 2Fe+2,+33O4

смешанный оксид Fe+2,+33O4 может быть доокислен до Fe+32O3:

4Fe+2,+33O4 + O2 =to=> 6Fe+32O3

Fe+32O3 + O2≠ — протекание данной реакции невозможно в принципе, т.к. оксидов, содержащих железо в степени окисления выше, чем +3, не существует.

Комментариев 73
  1. Alina

    Здравствуйте! В статье, где описываются способности кислотных оксидов реагировать с кислотами, есть уравнение взаимодействия P2O3 с HNO3(конц) и в этом уравнение присутствует вода, разве ее не должно быть, ведь кислота концентрированная?

    • Сергей Широкопояс

      концентрированнной азотная кислота считается уже при концентрации более 60%. Безводную азотную кислоту (или практически безводную) называют дымящей азотной кислотой.

  2. Ольга

    Cr2O3 + 6NaOH + 3H2O = 2Na3[Cr(OH)6] — гексагидроксохромат (III) натрия
    В книге автора Доронкин В.Н, подготовка ЕГЭ — данная реакция протекает только при сплавлении?

    • Сергей Широкопояс

      Гидроксокомплексные соли получаются только при действии на амфотерные оксиды водных растворов щелочей. При сплавлении амфотерных оксидов с твердыми щелочами будут получаться соли вида Na2MeO2 (для двухвалентных металлов) и вида NaMeO2 (для трехвалентных металлов)

    • Сергей Широкопояс

      При сплавлении оксида хрома (III) будет хромат (III) натрия NaCrO2

      • Татьяна К.

        Сергей, может быть хромит вернее?

        • Соавтор проекта Борисов И.С.

          Добрый день! В сообщении записано верно.

  3. Инна

    Al203 в примечании о нереагирующих оксидах CO2 и SO2.

    • Сергей Широкопояс

      Здравствуйте, Инна. Спасибо, поправил

  4. Инна

    амфотерные оксиды, а также диоксид кремния (SiO2) при их сплавлении с сульфитами и карбонатами вытесняют из последних сернистый (SO2) и углекислый (CO2) газы соответственно.
    Не очень понятно , и SiO2 , и амфотерные оксиды , каждый вытесняет эти газы ? Или только оксид кремния из сульфитов , амфотерные оксиды из карбонатов ?

    • Сергей Широкопояс

      И SiO2, и амфотерные оксиды вытесняют и СО2 и SO2.

  5. Анастасия

    Здравствуйте! Хотелось бы сказать спасибо за ваш труд! Очень хороший сайт, с ним можно не ходить на уроки химии, очень качественный и подробный материал.
    P.S. в таблице взаимодействия кислорода с оксидами есть опечатка в строке с марганцом: Mn+72O7 + O2 ≠ — данная реакция невозможна в принципе, т.к. +6 – высшая степень окисления ХРОМА.

    • Сергей Широкопояс

      Большое спасибо, исправлено. Приглашаю также подписаться на свой паблик в контакте https://vk.com/naukadljatebja

  6. Галина

    здравствуйте. протекает ли реакция между Fe2O3 и Ba(OH)2?

    • Сергей Широкопояс

      да, т.к. это реакция между амфотерными оксидом и щелочью

  7. Ольга

    Здравствуйте, Сергей! Спасибо за Ваш труд. Хочу уточнить про карбид кальция: это все-таки ацетиленид или карбид (взаимодействие оксида кальция с углеродом). Я всегда говорю ученикам, что карбиды- это когда СО углерода в соединении с металлом = -4. Может быть я не права?

    • Сергей Широкопояс

      Карбиды- это бинарные соединения с углеродом в отрицательной степени окисления. Карбиды бывают разные:

      1) метаниды — степень окисления углерода -4 (как в метане), например, Al4C3
      2) ацетилениды — степень окисления углерода -1, как в ацетилене, например CaC2

      могут быть и другие карбиды, не попадающие в эти типы. Например, карбид железа Fe3C

      • Ольга

        Спасибо. Очень убедительная и четкая классификация.

  8. Ольга

    Сергей, извините, но немножко просветите насчет определения СО железа и углерода в карбидах, если можно. Спасибо

    • Сергей Широкопояс

      Степень окисления величина условная. По определению это заряд атома в структурной единице, например, молекуле, вычисленный из предположения, что структурная единица состоит из ионов, даже если ионами там и не пахнет. Тем не менее, несмотря на эфемерность этой величины, она приносит ряд удобств, например, дает возможность использовать электронный баланс.

      Это я к тому, что для всяких «мудренных» соединений типа карбида железа, использование такого понятия как степень окисления смысла практически не имеет. Все что Вы не насчитаете будет в равной степени ерундой.

      • Ольга

        Разве соли, образованные при взаимод-вии оксида хрома (III) со щелочами наз-ся хроматами, а не хромитами. Ведь хроматы- это соли хромовой к-ты, где с/о хрома +6, а +3 в хромистой кислоте

        • Сергей Широкопояс

          Нет, все верно. Почитайте основы номенклатуры комплексных соединений.

          Na3[Cr(OH)6] — гексагидроксохромАт (III) натрия

          а вот в случае средней соли:
          NaCrO2 — хромИт натрия

          • Ден

            Сергей Широкопояс 14.03.2017 в 11:46
            При сплавлении оксида хрома (III) будет хромат (III) натрия NaCrO2

            Татьяна К. 27.10.2021 в 02:13
            Сергей, может быть хромит вернее?

            Соавтор проекта Борисов И.С. 27.10.2021 в 21:40
            Добрый день! В сообщении записано верно.

          • Соавтор проекта Борисов И.С.

            Добрый день! Хромит — тривиальное название, а хромат (III) — систематическое.

  9. Ольга

    Здравствуйте, Большое спасибо за теорию, очень полезная информация. Подскажите пожалуйста как реагируют оксиды неметаллов с водородом?
    NO, N2O восстанавливаются водородом до азота, а как быть с SO2 и SO3? Будут ли они реагировать с водородом? P2O5, например? Спасибо.

  10. Ольга

    Здравствуйте! Подскажите, пожалуйста, будет ли оксид углерода (II) реагироватьc оксидом кальция и оксидом хрома(III)?
    CO + 5CaO -> CaC2 + 3CO2,
    3CO + Cr2O3 -> 2Cr + 3CO2.
    Спасибо огромное!!!

  11. Валентина Павлова

    Здравствуйте,в восстановлении оксида металлами ,в самой последней реакции коэффициенты неправильно указаны 4Cu+2NO2=t°=4CuO+N2 ,а не 2Cu+NO2=2CuO+N2
    Просто не заметили ☺️
    Спасибо за ваш труд

    • Сергей Широкопояс

      точно, спасибо. исправил

  12. Юра

    Здравствуйте, Сергей. Хотел спросить: ведь P2O5 это сильный водоотниматель, разве он недолжен реагировать с водой и при реакции с кислотой, вроде, должна быть кислота HPO3(везде так пишут). я уже запутался. Так кому верить?

    • Сергей Широкопояс

      чтобы не было проблем лучше писать H3Po4

  13. Сергей

    в начале статьи — не все исключения для основных оксидов! Где SnO??? От тоже амфотерный!

    • Сергей Широкопояс

      в ЕГЭ это исключение не встречается. Поменьше истерии пожалуйста

  14. Амалия

    Сергей, можно уточнить, «привередливый» кислотный оксид СО2 будет ли взаимодействовать с MgO, ведь оксид магния неактивный оксид, т.к. ему соответствует нерастворимый гидроксид. В интернете пишут по-разному, в основном обходят эту реакцию.

    • Сергей Широкопояс

      И будет, и не будет. Если создать избыточное давление углекислого газа и повышенную темперутуру, то провзаимодействует, если просто пропустить ток СО2 надо оксидом магния при нагревании, то не будет.

  15. Кузьма

    Почему не написано про термически устойчивые и неустойчивые оксиды,,,?

    • Сергей Широкопояс

      потому как не спрашивают это на ЕГЭ.

      Но если так хочется можно запомнить оксиды ртути (II) и серебра

  16. Екатерина

    Здравствуйте! Вот при взаимодействии азотной кислоты с оксидом фосфора Р2О3, вы объснили наличие воды в азотной кислоте, но ведь в реакции с конц. серной кислотой тоже есть вода? А вот с оксидом серы 4 с конц азотной воды нет, эта реакция идёт с дымящей азотной кислотой ? От чего это зависит?

    • Соавтор проекта Борисов И.С.

      Добрый день! Вода в растворах серной и азотной кислоты, очевидно, присутствует. При записи ОВР различных добавляем воду слева или справа сообразно ситуации.

  17. Туйаара

    Доброго времени суток! Возможны ли такие реакции: Fe2O3 + 3H2S = 2FeS + S + 3H2O; 2H2S + CO2=2H2O + CS2 ?

    • Соавтор проекта Борисов И.С.

      Добрый день! Не исключено, что в каких-то условиях это и можно осуществить, однако в рамках ЕГЭ нас не касается. Особенно, химия сероуглерода.

  18. Хасик

    Насчёт специфичных реакций кислотных оксидов с кислотами.
    Помимо оксида фосфора 3 с кислота также может реагировать и оксид фосфора 5, не так ли?

    • Соавтор проекта Борисов И.С.

      Добрый день! Реакция высшего оксида фосфора с той же HNO3 действительно существует, однако в рамках ЕГЭ не интересует нас.

  19. Александр

    Здравствуйте! Подскажите пожалуйста насчёт реакции несолеобразующих оксидов с другими оксидами. Полагаю они не реагируют, но в тексте не указано, лучше уточню.

    • Соавтор проекта Борисов И.С.

      Добрый день! Помним, как минимум, про восстановительные свойства СО и возможность его реакции со многими оксидами средних и малоактивных металлов.

  20. Светлана

    Здравствуйте! На ЕГЭ попался вопрос (8 — он задание) с чем реагирует ZnO: HNO3, KHCO3,K2SO3 или SiO2, KОH, HCl? С оксидом кремния вряд ли реакция пойдет, значит ответ первый?

    • Соавтор проекта Борисов И.С.

      Добрый день! С азотной кислотой реакция точно есть.

  21. Рамиля

    Здравствуйте:)
    Возможна ли реакция Cr2O3 с раствором щелочи? Либо реакция с щелочью протекает только при сплавлении для cr2o3 и fe2o3

    • Соавтор проекта Борисов И.С.

      Добрый день! Только сплавление.

      • Рамиля

        Спасибо за ответ:)

        Даже с конц раствором щелочи cr2o3 не будет реагировать?

        • Рамиля

          С образованием комплекса

        • Соавтор проекта Борисов И.С.

          Считаем, что нет. Малоактивное вещество на самом деле.

  22. Юля

    Здравствуйте! Подскажите, пожалуйста, про оксид фосфора (5) не сказано, что он тоже взаимодействует с солью. Например карбонатом калия с вытеснением углекислого газа. Пойдет данная реакция? Она встретилась в сборнике ЕГЭ. какие еще оксиды будут взаимодействовать с солями?

    • Соавтор проекта Борисов И.С.

      Добрый день! Думаю, что пойдет. Суть подобных реакций в смещении равновесия при высокой температуре за счет ухода из системы газообразного СО2.

  23. Максим

    Здравствуйте! Не могу найти химические свойства пероксидов ЩМ и ЩЗМ металлов. Эту информацию нужно искать в другом разделе?

    • Соавтор проекта Борисов И.С.

      Добрый день! Есть мысль написать об этом заметку.

  24. Люлмила

    Добрый день,можно ли считать взаимодействие гидроксида натрия с диоксидом серы реакцией нейтрализации,реакция идет в растворе.

    • Соавтор проекта Борисов И.С.

      Добрый день! Нет, поскольку нейтрализацией называем взаимодействие кислоты и основания.

  25. Людмила

    Здравствуйте! Как можно распечатать теоретический материал?

    • Соавтор проекта Борисов И.С.

      Добрый день! Только через Ctrl+P.

  26. Людмила

    Большое спасибо.

    • Соавтор проекта Борисов И.С.

      Не за что, на связи.

  27. Ангелина

    Добрый день! Будет ли протекать реакция Cr2O3 + HI ? Если да, то какие продукты образуются?

    • Соавтор проекта Борисов И.С.

      Добрый день! Cr2O3 в принципе сложно в чем-то растворить. По поводу продуктов написал бы CrI3.

  28. Людмила

    Здравствуйте! А возможна ли реакция Fe2O3 с водным раствором щёлочи с образованием гидроксокомплекса ?

    • Соавтор проекта Борисов И.С.

      Добрый день! Нет, не реагируют.

  29. Ангелина

    Здравствуйте! Возможна ли реакия кислотного Mn2O7 с амфотерным BeO ?

    • Соавтор проекта Борисов И.С.

      Добрый день! Да, вполне.

  30. Мария

    Здравствуйте, скажите пожалуйста, если кислотные оксиды SO2 и CO2 реагируют только с активными основными оксидами и не реагируют с малоактивными основными оксидами и амфотерными, то кислоты, соответствующие этим кислотным оксидам( H2SO3, H2CO3) также будут взаимодействовать только с активными основными оксидами и не будут реагировать с малоактивными основными оксидами и амфотерными оксидами? Эти кислоты будут реагировать только с щелочами или со всеми основаниями? Что насчет MgO и Al2O3, они реагируют с водой только при нагревании, в заданиях отмечать, что они могут реагировать с водой или нет, можно ли в заданиях на цепочки писать реакцию взаимодействия этих оксидов?С амфотерными оксидами реагируют только активные основные оксиды или все основные оксиды? Всегда ли реакция протекает при нагревании ? Можно ли в заданиях выбрать , что эта реакция протекает при обычных условиях?

    • Соавтор проекта Борисов И.С.

      Добрый день! Идеи верные, реакции оксидов с водой нет. Алюминия так точно.

  31. Ара

    Доброго времени суток! Подскажите, пожалуйста, пойдет ли реакция между оксидом железа 2 и углекислым газом?
    Заранее благодарю!

    • Соавтор проекта Борисов И.С.

      Добрый день! Нет, не пойдет. В рамках ЕГЭ считаем так.

      • Ара

        Хорошо, спасибо большое!

        • Соавтор проекта Борисов И.С.

          Не за что

Добавить комментарий

Ваш e-mail не будет опубликован.